Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e10756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552738

RESUMEN

BACKGROUND: Pseudomonas chlororaphis strain PA23 is a biocontrol agent that is able to protect canola against the pathogenic fungus Sclerotinia sclerotiorum. This bacterium secretes a number of metabolites that contribute to fungal antagonism, including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN) and degradative enzymes. In order to be successful, a biocontrol agent must be able to persist in the environment and avoid the threat of grazing predators. The focus of the current study was to investigate whether PA23 is able to resist grazing by the protozoan predator Acanthamoeba castellanii (Ac) and to define the role of bacterial metabolites in the PA23-Ac interaction. METHODS: Ac was co-cultured with PA23 WT and a panel of derivative strains for a period of 15 days, and bacteria and amoebae were enumerated on days 1, 5, 10 and 15. Ac was subsequently incubated in the presence of purified PRN, PHZ, and KCN and viability was assessed at 24, 48 and 72 h. Chemotactic assays were conducted to assess whether PA23 compounds exhibit repellent or attractant properties towards Ac. Finally, PA23 grown in the presence and absence of amoebae was subject to phenotypic characterization and gene expression analyses. RESULTS: PRN, PHZ and HCN were found to contribute to PA23 toxicity towards Ac trophozoites, either by killing or inducing cyst formation. This is the first report of PHZ-mediated toxicity towards amoebae. In chemotaxis assays, amoebae preferentially migrated towards regulatory mutants devoid of extracellular metabolite production as well as a PRN mutant, indicating this antibiotic has repellent properties. Co-culturing of bacteria with amoebae led to elevated expression of the PA23 phzI/phzR quorum-sensing (QS) genes and phzA and prnA, which are under QS control. PHZ and PRN levels were similarly increased in Ac co-cultures, suggesting that PA23 can respond to predator cues and upregulate expression of toxins accordingly. CONCLUSIONS: PA23 compounds including PRN, PHZ and HCN exhibited both toxic and repellent effects on Ac. Co-culturing of bacteria and amoebae lead to changes in bacterial gene expression and secondary metabolite production, suggesting that PA23 can sense the presence of these would-be predators and adjust its physiology in response.

2.
Front Microbiol ; 11: 1969, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849487

RESUMEN

Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is the most important disease affecting canola (Brassica napus) crops worldwide. We employed the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to generate the mutant isolate umavr7 from a point mutation of the AvrLm7 coding region in a L. maculans isolate (UMAvr7). Reverse transcription PCR and transcriptome data confirmed that the AvrLm7 gene was knocked out in the mutant isolate. Pathogenicity tests indicated that umavr7 can cause large lesions on a set of Brassica differential genotypes that express different resistance (R) genes. Comparative pathogenicity tests between UMAvr7 (wild type) and umavr7 on the corresponding B. napus genotype 01-23-2-1 (with Rlm7) showed that umavr7 is a mutant isolate, producing large gray/green lesions on cotyledons. The pathogenicity of the mutant isolate was shifted from avirulent to virulent on the B. napus Rlm7 genotype. Therefore, this mutant is virulence on the identified resistant genes to blackleg disease in B. napus genotypes. Superoxide accumulated differently in cotyledons in response to infection with UMAvr7 and umavr7, especially in resistant B. napus genotype 01-23-2-1. Resistance/susceptibility was further evaluated on 123 B. napus genotypes with the mutant isolate, umavr7. Only 6 of the 123 genotypes showed resistance to umavr7. The identification of these six resistant B. napus genotypes will lead to further studies on the development of blackleg disease resistance through breeding and the identification of novel R genes.

3.
Fungal Genet Biol ; 136: 103320, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31863838

RESUMEN

Leptosphaeria maculans is the causal agent of blackleg disease on Brassica napus. Determining the underlying functions of genes required for pathogenesis is essential for understanding the infection process. A chitin-binding protein (LmCBP1) was discovered as a pathogenicity factor for the infection of B. napus by L. maculans through gene knockout using the CRISPR-Cas9 system. Chitin-binding activity was demonstrated through a chitin-protein binding assay. A secreted signal peptide was detected using a yeast secreted-signal peptide trap assay. An increased expression level during the infection stage was also observed, suggesting that LmCBP1 is a secreted protein. The knockout mutants showed decreased infection on B. napus, with reduced pathogenicity on ten cultivars with/without diverse R genes. The mutants were more sensitive to H2O2 compared to wild type L. maculans isolate JN3. This study provides evidence of the virulence of a novel chitin-binding protein LmCBP1 on B. napus through mutants created via the CRISPR-Cas9 system.


Asunto(s)
Brassica napus/microbiología , Proteínas Portadoras/genética , Proteínas Fúngicas/genética , Leptosphaeria/genética , Leptosphaeria/patogenicidad , Enfermedades de las Plantas/microbiología , Sistemas CRISPR-Cas , Proteínas Portadoras/metabolismo , Quitina/metabolismo , ADN de Hongos , Proteínas Fúngicas/metabolismo , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno , Peróxido de Hidrógeno/farmacología , Leptosphaeria/metabolismo , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Virulencia/genética
4.
Plant Dis ; 102(4): 790-798, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30673397

RESUMEN

Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is one of the most economically important diseases of canola (Brassica napus, oilseed rape) worldwide. This study assessed incidence of blackleg, the avirulence allele, and mating type distributions of L. maculans isolates collected in commercial canola fields in Manitoba, Canada, from 2010 to 2015. A total of 956 L. maculans isolates were collected from 2010 to 2015 to determine the presence of 12 avirulence alleles using differential canola cultivars and/or PCR assays specific for each avirulence allele. AvrLm2, AvrLm4, AvrLm5, AvrLm6, AvrLm7, AvrLm11, and AvrLmS were detected at frequencies ranging from 97 to 33%, where the AvrLm1, AvrLm3, AvrLm9, AvrLepR1, and AvrLepR2 alleles were the least abundant. When the race structure was examined, a total of 170 races were identified among the 956 isolates, with three major races, AvrLm-2-4-5-6-7-11, AvrLm-2-4-5-6-7-11-S, and Avr-1-4-5-6-7-11-(S) accounting for 15, 10, and 6% of the total fungal population, respectively. The distribution of the mating type alleles (MAT1-1 and MAT1-2) indicated that sexual reproduction was not inhibited in any of the nine Manitoba regions in any of the years L. maculans isolates were collected.


Asunto(s)
Alelos , Ascomicetos/genética , Ascomicetos/patogenicidad , Brassica rapa/microbiología , Genes del Tipo Sexual de los Hongos/genética , Enfermedades de las Plantas/microbiología , Variación Genética , Manitoba
5.
Microbiology (Reading) ; 162(12): 2159-2169, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27998371

RESUMEN

Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola from stem rot disease caused by the fungus Sclerotinia sclerotiorum. The focus of the current study was to elucidate the role of the transcriptional regulator ANR in the biocontrol capabilities of this bacterium. An anr mutant was created, PA23anr, that was devoid antifungal activity. In other pseudomonads, ANR is essential for regulating HCN production. Characterization of PA23anr revealed that, in addition to HCN, ANR controls phenazine (PHZ), pyrrolnitrin (PRN), protease and autoinducer (AHL) signal molecule production. In gene expression studies, hcnA, phzA, prnA and phzI were found to be downregulated, consistent with our endproduct analysis. Because the phenotype of PA23anr closely resembles that of quorum sensing (QS)-deficient strains, we explored whether there is a connection between ANR and the PhzRI QS system. Both phzI and phzR are positively regulated by ANR, whereas PhzR represses anr transcription. Complementation of PA23anr with pUCP-phzR, C6-HSL or both yielded no change in phenotype. Conversely, PA23phzR harbouring pUCP23-anr exhibited partial-to-full restoration of antifungal activity, HCN, PRN and AHL production together with hcnA, prnA, phzI and rpoS expression. PHZ and protease production remained unchanged indicating that ANR can complement the QS-deficient phenotype with respect to some but not all traits. Our experiments were conducted at atmospheric O2 levels underscoring the fact that ANR has a profound effect on PA23 physiology under aerobic conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Pseudomonas chlororaphis/metabolismo , Ascomicetos/fisiología , Proteínas Bacterianas/genética , Fenazinas/metabolismo , Pseudomonas chlororaphis/genética , Transactivadores/genética , Transactivadores/metabolismo
6.
Front Microbiol ; 7: 1512, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27713742

RESUMEN

In vitro inhibition of the fungal pathogen Sclerotinia sclerotiorum by Pseudomonas chlororaphis PA23 is reliant upon a LysR-type transcriptional regulator (LTTR) called PtrA. In the current study, we show that Sclerotinia stem rot and leaf infection are significantly increased in canola plants inoculated with the ptrA-mutant compared to the wild type, establishing PtrA as an essential regulator of PA23 biocontrol. LTTRs typically regulate targets that are upstream of and divergently transcribed from the LTTR locus. We identified a short chain dehydrogenase (scd) gene immediately upstream of ptrA. Characterization of a scd mutant revealed that it is phenotypically identical to the wild type. Moreover, scd transcript abundance was unchanged in the ptrA mutant. These findings indicate that PtrA regulation does not involve scd, rather this LTTR controls genes located elsewhere on the chromosome. Employing a combination of complementation and transcriptional analysis we investigated whether connections exist between PtrA and other regulators of biocontrol. Besides ptrA, gacS was the only gene able to partially rescue the wild-type phenotype, establishing a connection between PtrA and the sensor kinase GacS. Transcriptomic analysis revealed decreased expression of biosynthetic (phzA, prnA) and regulatory genes (phzI, phzR, rpoS, gacA, rsmX, rsmZ, retS) in the ptrA mutant; conversely, rsmE, and rsmY were markedly upregulated. The transcript abundance of ptrA was nine-fold higher in the mutant background indicating that this LTTR negatively autoregulates itself. In summary, PtrA is an essential regulator of genes required for PA23 biocontrol that is functionally intertwined with GacS.

7.
Front Microbiol ; 7: 600, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199930

RESUMEN

Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as "effectors" is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.

8.
Genome Announc ; 3(4)2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26251482

RESUMEN

Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate.

9.
PLoS One ; 10(6): e0128587, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053039

RESUMEN

Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.


Asunto(s)
Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/crecimiento & desarrollo , Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antibacterianos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hemólisis/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Ovinos , Bibliotecas de Moléculas Pequeñas/toxicidad
10.
PLoS One ; 10(4): e0123184, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901993

RESUMEN

Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN), and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which should facilitate environmental persistence and ultimately biocontrol.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Cianuro de Hidrógeno/metabolismo , Cianuro de Hidrógeno/farmacología , Pseudomonas/metabolismo , Pirrolnitrina/biosíntesis , Pirrolnitrina/farmacología , Animales , Antinematodos/metabolismo , Antinematodos/farmacología , Bioensayo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Regulación Bacteriana de la Expresión Génica , Oviposición/efectos de los fármacos , Control Biológico de Vectores , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo
11.
Antimicrob Agents Chemother ; 59(5): 2918-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712357

RESUMEN

The development of antibacterial compounds that perturb novel processes is an imperative in the challenge presented by widespread antibiotic resistance. While many antibiotics target the ribosome, molecules that inhibit ribosome assembly have yet to be used in this manner. Here we show that a novel inhibitor of ribosome biogenesis, lamotrigine, is capable of rescuing Caenorhabditis elegans from an established Salmonella infection, revealing that ribosome biogenesis is a promising target for the development of new antibiotics.


Asunto(s)
Antibacterianos/uso terapéutico , Caenorhabditis elegans/microbiología , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Animales , Lamotrigina , Infecciones por Salmonella/tratamiento farmacológico , Triazinas/farmacología
12.
Crit Rev Microbiol ; 41(4): 465-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24617440

RESUMEN

The increasing emergence of antimicrobial multiresistant bacteria is of great concern to public health. While these bacteria are becoming an ever more prominent cause of nosocomial and community-acquired infections worldwide, the antibiotic discovery pipeline has been stalled in the last few years with very few efforts in the research and development of novel antibacterial therapies. Some of the root causes that have hampered current antibiotic drug development are the lack of understanding of the mode of action (MOA) of novel antibiotic molecules and the poor characterization of the bacterial physiological response to antibiotics that ultimately causes resistance. Here, we review how bacterial genetic tools can be applied at the genomic level with the goal of profiling resistance to antibiotics and elucidating antibiotic MOAs. Specifically, we highlight how chemical genomic detection of the MOA of novel antibiotic molecules and antibiotic profiling by next-generation sequencing are leveraging basic antibiotic research to unprecedented levels with great opportunities for knowledge translation.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple/genética , Fenómenos Fisiológicos Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
13.
BMC Microbiol ; 14: 94, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24739259

RESUMEN

BACKGROUND: Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of suppressing the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces the antibiotics phenazine and pyrrolnitrin together with other metabolites believed to contribute to biocontrol. A mutant no longer capable of inhibiting fungal growth was identified harboring a transposon insertion in a gene encoding a LysR-type transcriptional regulator (LTTR), designated ptrA (Pseudomonas transcriptional regulator). Isobaric tag for relative and absolute quantitation (iTRAQ) based protein analysis was used to reveal changes in protein expression patterns in the ptrA mutant compared to the PA23 wild type. RESULTS: Relative abundance profiles showed 59 differentially-expressed proteins in the ptrA mutant, which could be classified into 16 clusters of orthologous groups (COGs) based on their predicted functions. The largest COG category was the unknown function group, suggesting that many yet-to-be identified proteins are involved in the loss of fungal activity. In the secondary metabolite biosynthesis, transport and catabolism COG, seven proteins associated with phenazine biosynthesis and chitinase production were downregulated in the mutant. Phenotypic assays confirmed the loss of phenazines and chitinase activity. Upregulated proteins included a lipoprotein involved in iron transport, a flagellin and hook-associated protein and four proteins categorized into the translation, ribosome structure and biogenesis COG. Phenotypic analysis revealed that the mutant exhibited increased siderophore production and flagellar motility and an altered growth profile, supporting the proteomic findings. CONCLUSION: PtrA is a novel LTTR that is essential for PA23 fungal antagonism. Differential protein expression was observed across 16 COG categories suggesting PtrA is functioning as a global transcriptional regulator. Changes in protein expression were confirmed by phenotypic assays that showed reduced phenazine and chitinase expression, elevated flagellar motility and siderophore production, as well as early entrance into log phase growth.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antibiosis , Ascomicetos/crecimiento & desarrollo , ADN Bacteriano/química , ADN Bacteriano/genética , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutagénesis Insercional , Control Biológico de Vectores , Proteoma/análisis , Análisis de Secuencia de ADN
14.
Microbiology (Reading) ; 158(Pt 4): 896-907, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262095

RESUMEN

The aim of the current study was to determine how quorum sensing (QS) affects the production of secondary metabolites in Pseudomonas chlororaphis strain PA23. A phzR mutant (PA23phzR) and an N-acylhomoserine lactone (AHL)-deficient strain (PA23-6863) were generated that no longer inhibited the fungal pathogen Sclerotinia sclerotiorum in vitro. Both strains exhibited reduced pyrrolnitrin (PRN), phenazine (PHZ) and protease production. Moreover, phzA-lacZ and prnA-lacZ transcription was significantly reduced in PA23phzR and PA23-6863. As the majority of secondary metabolites are produced at the onset of stationary phase, we investigated whether cross-regulation occurs between QS and RpoS. Analysis of transcriptional fusions revealed that RpoS has a positive and negative effect on phzI and phzR, respectively. In a reciprocal manner, RpoS is positively regulated by QS. Characterization of a phzRrpoS double mutant showed reduced antifungal activity as well as PRN and PHZ production, similar to the QS-deficient strains. Furthermore, phzR but not rpoS was able to complement the phzRrpoS double mutant for the aforementioned traits, indicating that the Phz QS system is a central regulator of PA23-mediated antagonism. Finally, we discovered that QS and RpoS have opposing effects on PA23 biofilm formation. While both QS-deficient strains produced little biofilm, the rpoS mutant showed enhanced biofilm production compared with PA23. Collectively, our findings indicate that QS controls diverse aspects of PA23 physiology, including secondary metabolism, RpoS and biofilm formation. As such, QS is expected to play a crucial role in PA23 biocontrol and persistence in the environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fenazinas/metabolismo , Pseudomonas/genética , Pirrolnitrina/biosíntesis , Percepción de Quorum/genética , Factor sigma/metabolismo , Transactivadores/metabolismo , Antifúngicos/metabolismo , Ascomicetos/efectos de los fármacos , Proteínas Bacterianas/genética , Biopelículas , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Factor sigma/genética , Transactivadores/genética
15.
Microbiology (Reading) ; 158(Pt 1): 207-216, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22016568

RESUMEN

The stringent response (SR) is a regulatory mechanism that enables bacteria to adapt to nutrient stress through the production of the alarmone (p)ppGpp. The aim of the current study was to understand how the SR affects the antifungal (AF) activity of Pseudomonas chlororaphis PA23. Two SR mutants were generated, PA23relA and PA23relAspoT, that no longer produced (p)ppGpp. Both mutants exhibited increased inhibition of Sclerotinia sclerotiorum in vitro and elevated pyrrolnitrin (PRN), lipase and protease production. Phenazine (PHZ) levels, on the other hand, remained unchanged. Through transcriptional fusion analysis we discovered that prnA-lacZ (PRN) activity was increased in the SR mutants, whereas phzA-lacZ (PHZ) activity was equal to that of the wild-type. We also examined how the sigma factor RpoS impacts PA23-mediated antagonism. Similar to the SR mutants, an rpoS mutant of PA23, called PA23rpoS, exhibited enhanced AF activity in vitro and increased expression of PRN, protease and lipase. However, PHZ production and expression of phzA-lacZ were dramatically reduced. Consistent with what has been reported for other bacteria, the SR exerted positive control over rpoS expression. In addition, providing rpoS in trans restored the SR phenotype to that of the wild-type. Collectively, our findings indicate that this global stress response impacts production of PA23 AF compounds via regulation of rpoS transcription and has an overall negative influence on S. sclerotiorum antagonism.


Asunto(s)
Antibiosis , Ascomicetos/crecimiento & desarrollo , Mutación , Pseudomonas/fisiología , Ascomicetos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Pseudomonas/genética
16.
Appl Environ Microbiol ; 77(16): 5635-42, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21705548

RESUMEN

The stringent response (SR) enables bacteria to adapt to nutrient limitation through production of the nucleotides guanosine tetraphosphate and guanosine pentaphosphate, collectively known as (p)ppGpp. Two enzymes are responsible for the intracellular pools of (p)ppGpp: RelA acts as a synthetase, while SpoT can function as either a synthetase or a hydrolase. We investigated how the SR affects the ability of the biological control agent Pseudomonas sp. strain DF41 to inhibit the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary. Strain DF41 relA and relA spoT mutants were generated and found to exhibit increased antifungal activity. Strain DF41 produces a lipopeptide (LP) molecule that is essential for Sclerotinia biocontrol. LP production and protease activity were both elevated in the relA and relA spoT mutants. Addition of relA but not spoT in trans restored the mutant phenotype to that of the parent. Next, we investigated whether an association exists between the SR and known regulators of biocontrol, including the Gac system and RpoS. A gacS mutant of strain DF41 produced less (p)ppGpp and exhibited a 1.7-fold decrease in relA expression compared to the wild type, suggesting that relA forms part of the Gac regulon. We discovered that rpoS transcription was reduced significantly in the SR mutants. Furthermore, rpoS provided in trans restored protease activity to wild-type levels but did not attenuate antifungal activity. Finally, relA expression was decreased in the mutants, indicating that the SR is required for maximum expression of relA.


Asunto(s)
Antibiosis , Ascomicetos/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos , Agentes de Control Biológico , Pseudomonas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Reguladores , Guanosina Pentafosfato/metabolismo , Ligasas/genética , Ligasas/metabolismo , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Pseudomonas/genética , Factor sigma/genética , Factor sigma/metabolismo , Transcripción Genética
17.
FEMS Microbiol Ecol ; 71(1): 73-83, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19889032

RESUMEN

Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of suppressing disease caused by the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces the diffusible antibiotics phenazine-1-carboxylic acid, 2-hydroxyphenazine and pyrrolnitrin (PRN). Because the individual contribution of these antibiotics to PA23 biocontrol has not been defined, mutants deficient in the production of phenazine (PHZ), PRN or both antibiotics were created. Analysis of the PHZ mutant revealed enhanced antifungal activity in vitro and wild-type levels of Sclerotinia disease suppression. Conversely, the PRN- and the PRN/PHZ-deficient strains exhibited decreased antifungal activity in vitro and markedly reduced the ability to control Sclerotinia infection of canola in the greenhouse. These findings suggest that PRN is the primary antibiotic mediating biocontrol of this pathogen. Analysis of prnA-lacZ and phzA-lacZ transcriptional fusions revealed that PRN and PHZ are not subject to autoregulation; moreover, they do not cross-regulate each other. However, HPLC showed a twofold increase in PRN levels in the PHZ(-) background. Finally, PHZ, but not PRN production, is involved in biofilm development in P. chlororaphis PA23.


Asunto(s)
Ascomicetos/fisiología , Biopelículas/crecimiento & desarrollo , Fenazinas/metabolismo , Pseudomonas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Mutación , Control Biológico de Vectores , Pseudomonas/genética , Pseudomonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...